
Chapter 9

Rotation About an
Arbitrary Axis

9.1 Quick Review

Given a point P = (x, y, z, 1) in homogeneous coordinates, let P 0 = (x0, y0, z0, 1)
be the corresponding point after a rotation around one of the coordinate axis has
been applied. You will recall the following from our studies of transformations:

1. Rotation about the x-axis by an angle θx, counterclockwise (looking along
the x-axis towards the origin). Then P 0 = RxP where the rotation matrix,
Rx,is given by:

Rx =

2

664

1 0 0 0
0 cos θx − sin θx 0
0 sin θx cos θx 0
0 0 0 1

3

775

2. Rotation about the y-axis by an angle θy, counterclockwise (looking along
the y-axis towards the origin). Then P 0 = RyP where the rotation matrix,
Ry,is given by:

Ry =

2

664

cos θy 0 sin θy 0
0 1 0 0

− sin θy 0 cos θy 0
0 0 0 1

3

775

3. Rotation about the z-axis by an angle θz, counterclockwise (looking along
the z-axis towards the origin). Then P 0 = RzP where the rotation matrix,
Rz,is given by:

Rz =

2

664

cos θz − sin θz 0 0
sin θz cos θz 0 0
0 0 1 0
0 0 0 1

3

775
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Note that the above transformations also apply to vectors.
You will also recall that

R−1x = RTx

R−1y = RTy

R−1z = RTz

This means in particular that these matrices are orthogonal. It can also be
proven that the product of two orthogonal matrices is itself an orthogonal matrix
(see problems at the end of the chapter). So, if we combine several rotations
about the coordinate axis, the matrix of the resulting transformation is itself an
orthogonal matrix.
One way of implementing a rotation about an arbitrary axis through the

origin is to combine rotations about the z, y, and x− axes. The matrix of the
resulting transformation, Rxyz, is

Rxyz = RxRyRz =

2

4
CyCz −CySz Sy

SxSyCz + CxSz −SxSySz + CxCz −SxCy
−CxSyCz + SxSz CxSySz + SxCz CxCy

3

5 (9.1)

where
Ci = cos θi and Si = sin θi for i = x, y, z

From what we noticed above, Rxyz is an orthogonal matrix. This means that
its inverse is its transpose.

9.2 Rotation About an Arbitrary Axis Through
the Origin

Goal: Rotate a vector v = (x, y, z) about a general axis with direction vector br
(assume br is a unit vector, if not, normalize it) by an angle θ (see figure 9.1).
Because it is clear we are talking about vectors, and vectors only, we will omit
the arrow used with vector notation.
We begin by decomposing v into two components: one parallel to br and one

perpendicular to br. Let us denote vk the component parallel to br and v? the
component perpendicular to br. You will recall from our study of vectors that

vk = compbrv

=
v · br
kbrk2

br

= (v · br) br since br is a unit vector

Similarly,

v? = orthbrv

= v− (v · br) br

K MADHAVA KRISHNA


K MADHAVA KRISHNA




9.2. ROTATION ABOUTANARBITRARYAXIS THROUGHTHEORIGIN119

And we have

v = vk + v?

Figure 9.1: Rotation about a general axis through the origin, showing the axis
of rotation and the plane of rotation (see [VB1])

Let T denote the rotation we are studying. We need to compute T (v).

T (v) = T
(
vk + v?

)

= T
(
vk
)
+ T (v?)

since T is a linear transformation. Also,

T
(
vk
)
= vk
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Figure 9.2: Rotation about a general axis through the origin, showing vectors
on the plane of rotation (see [VB1])
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since vk has the same direction as br and we are rotating around an axis with
direction vector br(see figure 9.1). Therefore,

T (v) = vk + T (v?)

So, T (v?) is the only quantity we need to compute. For this, we create a two
dimensional basis in the plane of rotation (see figure 9.1 and 9.2). We will use
v? as our first basis vector. For our second, we can use

w = br × v? (9.2)

= br × v

Looking at figure 9.2, we see that

T (v?) = cos θv? + sin θw

= cos θv? + sin θ (br × v)

and therefore

T (v) = vk + T (v?)

= (v · br) br + cos θv? + sin θ (br × v)
= (v · br) br + cos θ [v− (v · br) br] + sin θ (br × v)
= (v · br) br + cos θv− cos θ (v · br) br + sin θ (br × v)
= (1− cos θ) (v · br) br + cos θv + sin θ (br × v)

We would like to express this as a matrix transformation, in other words, we
want to find the matrix R such that T (v) = Rv. For this, we first establish
some intermediary results.

Lemma 97 If u = (ux, uy, uz) and v = (vx, vy, vz) then

u× v =

2

4
0 −uz uy
uz 0 −ux
−uy ux 0

3

5v

Proof.

u× v =

∣∣∣∣∣∣

i j k
ux uy uz
vx vy vz

∣∣∣∣∣∣

=

2

4
uyvz − uzvy
uzvx − uxvz
uxvy − uyvx

3

5

=

2

4
0 −uz uy
uz 0 −ux
−uy ux 0

3

5v
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Lemma 98 Using the notation of the previous lemma, we have

(u · v)u =

2

4
u2x uxuy uxuz
uxuy u2y uyuz
uxuz uyuz u2z

3

5v

Proof.
u · v = uxvx + uyvy + uzvz

So,

(u · v)u = (uxvx + uyvy + uzvz)u

= (uxvx + uyvy + uzvz)

2

4
ux
uy
uz

3

5

=

2

4
u2x uxuy uxuz
uxuy u2y uyuz
uxuz uyuz u2z

3

5v

We are now ready to write T (v) as a matrix transformation.

T (v) = (1− cos θ) (v · br) br + cos θv + sin θ (br × v)

= (1− cos θ)

2

4
u2x uxuy uxuz
uxuy u2y uyuz
uxuz uyuz u2z

3

5v +

2

4
1 0 0
0 1 0
0 0 1

3

5 cos θv+sin θ

2

4
0 −uz uy
uz 0 −ux
−uy ux 0

3

5v

=

8
<

:(1− cos θ)

2

4
u2x uxuy uxuz
uxuy u2y uyuz
uxuz uyuz u2z

3

5+

2

4
1 0 0
0 1 0
0 0 1

3

5 cos θ+sin θ

2

4
0 −uz uy
uz 0 −ux
−uy ux 0

3

5

9
=

;v

=

2

4
tu2x + C tuxuy − Suz tuxuz + Suy

tuxuy + Suz tu2y + C tuyuz − Sux
tuxuz − Suy tuyuz + Sux tu2z + C

3

5v

where

br = (ux, uy, uz)

C = cos θ

S = sin θ

t = 1− cos θ

.

9.3 Assignment

1. Prove that the product of two orthogonal matrices is also an orthogonal
matrix.
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2. Prove equation 9.1

3. Prove equation 9.2

4. How would you implement rotation about an axis not going through the
origin? First, consider the cases in which the axis of rotation is parallel to
one of the coordinate axes. Then, consider the general case. In each case,
derive the corresponding transformation matrix.
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